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Abstract In this article, we propose and study a new class of semiparametric mix-
ture of regression models, where the mixing proportions and variances are constants,
but the component regression functions are smooth functions of a covariate. A one-
step backfitting estimate and two EM-type algorithms have been proposed to achieve
the optimal convergence rate for both the global parameters and the nonparametric
regression functions. We derive the asymptotic property of the proposed estimates and
show that both the proposed EM-type algorithms preserve the asymptotic ascent prop-
erty. A generalized likelihood ratio test is proposed for semiparametric inferences. We
prove that the test follows an asymptotic χ2-distribution under the null hypothesis,
which is independent of the nuisance parameters. A simulation study and two real data
examples have been conducted to demonstrate the finite sample performance of the
proposed model.
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1 Introduction

Finite mixture of regression models, also known as switching regression models in
econometrics, have been widely applied in various fields, see, for example, in econo-
metrics (Wedel and DeSarbo 1993; Frühwirth-Schnatter 2001), and in epidemiology
(Green and Richardson 2002). Since Goldfeld and Quandt (1973) first introduced the
mixture regression model, many efforts have been made to extend the traditional para-
metric mixture of linear regression models. For example, Young and Hunter (2010),
and Huang and Yao (2012) studied models which allow the mixing proportions to
depend on the covariates nonparametrically; Huang et al. (2013) proposed a fully
nonparametric mixture of regression models by assuming the mixing proportions,
the regression functions, and the variance functions to be nonparametric functions
of a covariate; Cao and Yao (2012) suggested a semiparametric mixture of binomial
regression models for binary data.

In this article, we propose a new semiparametric mixture of regression models,
where the mixing proportions and variances are constants, but the component regres-
sion functions are nonparametric functions of a covariate. Compared to traditional
finite mixture of linear regression models, the newly proposed model relaxes the para-
metric assumption on the regression functions, and allows the regression function in
each component to be an unknown but smooth function of covariates. Compared to the
fully nonparametricmixture of regressionmodels proposed byHuang et al. (2013), our
new model improves the efficiency of the estimates of the mean functions by assum-
ing the mixing proportions and variances to be constants, which are also presumed
by the traditional mixture of linear regressions. The new model is more challenging
to estimate due to the existence of both global parameters and local parameters. The
comparison of our paper to Huang et al. (2013) is similar to the comparison between
semiparametric regression and fully nonparametric regression. Although the paramet-
ric parts of our model have stronger assumption than the nonparametric parts of Huang
et al. (2013), they can provide more homogeneous model and more efficient estimate.
Therefore, the proposed semiparametric model can combine the good properties of
both parametric models and nonparametric models.

Our new model is motivated by a US house price index data, which is also used by
Huang et al. (2013). The data set contains the monthly change of S&P/Case-Shiller
House Price Index (HPI) and monthly growth rate of United States Gross Domestic
Product (GDP) from January 1990 to December 2002, see Fig. 3a for a scatter plot.
Based on the plot, it can be seen that there are two homogeneous groups and the
relationship between HPI and GDP are different in different groups. In addition, it is
clear that the relationship in each group is not linear. Therefore, the traditional mix-
ture of linear regression models can not be applied. In Fig. 3b, we added the two fitted
component regression curves based on our new model, and it is clear that the new
model successfully recovered the two-component regression curves. In addition, the
observations were classified into two groups corresponding to two different macroe-
conomic cycles, which possibly explains that the impact of GDP growth rate on HPI
change may be different in different macroeconomic cycles.

We will show the identifiability of the proposed model under some regularity con-
ditions. To estimate the unknown smoothing functions, we propose both a regression
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Semiparametric mixtures of nonparametric regressions 133

spline based estimator and a local likelihood estimator using the kernel regression tech-
nique. To achieve the optimal convergence rate for both the global parameters and the
nonparametric functions, we propose a one-step backfitting estimation procedure. The
asymptotic properties of the one-step backfitting estimate are investigated. In addition,
we propose twoEM-type algorithms to compute the proposed estimates and prove their
asymptotic ascent properties. A generalized likelihood ratio test is proposed for testing
whether the mixing proportions and variances are indeed constants. We investigate the
asymptotic behavior of the test and prove that its limiting null distribution follows a
χ2-distribution independent of the nuisance parameters. A simulation study and two
real data applications are used to demonstrate the effectiveness of the new model.

The rest of the paper is organized as follows. In Sect. 2, we introduce the new semi-
parametric mixture of regression models and the estimation procedure. In particular,
we propose a regression spline estimate and a one-step backfitting estimate. A gen-
eralized likelihood ratio test is also introduced for some semiparametric inferences.
In Sect. 3, we use a Monte Carlo study and two real data examples to demonstrate
the finite sample performance of the proposed model and estimates. We conclude the
paper with a brief discussion in Sect. 4 and defer the proofs to the Appendix.

2 Estimation procedure and asymptotic properties

2.1 The semiparametric mixture of regression models

Assume {(Xi ,Yi ), i = 1, . . . , n} are a random sample from the population (X,Y ).
Let Z be a latent variable with P(Z = j) = π j for j = 1, . . . , k. Suppose
E(Y |X = x, Z = j) = m j (x) and conditioning on Z = j and X = x , Y follows
a normal distribution with mean m j (x) and variance σ 2

j . Then, without observing Z ,
the conditional distribution of Y given X = x can be written as

Y |X=x ∼
k∑

j=1

π jφ(Y |m j (x), σ
2
j ), (1)

where φ(y|μ, σ 2) is the normal density with mean μ and variance σ 2. In this paper,
we only considered the case when X is univariate. The estimation methodology and
theoretical results discussed can be readily extended to multivariate X , but due to
the “curse of dimensionality”, the extension is less applicable and thus omitted here.
Throughout the paper, we assume that k is fixed, and therefore, refer to (1) as a finite
semiparametricmixture of regressionmodels, sincem j (x) is a nonparametric function
of x , while π j and σ j are global parameters. If m j (x) is indeed linear in x , model
(1) boils down to a regular finite mixture of linear regression models. When k = 1,
then model (1) is a nonparametric regression model. Therefore, model (1) is a natural
extension of the finite mixture of linear regression models and the nonparametric
regression model.
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134 S. Xiang and W. Yao

Huang et al. (2013) studied a nonparametric mixture of regression models (NMR),

Y |X=x ∼
k∑

j=1

π j (x)φ(Y |m j (x), σ
2
j (x)), (2)

where π j (·),m j (·), and σ 2
j (·) are unknown but smooth functions. Compared to model

(2), model (1) improves the efficiency of the estimates of π j , σ j andm j (x) by assum-
ing the mixing proportions and variances to be constants, which are also presumed by
the traditional mixture of linear regressions. We will demonstrate such improvement
in Sect. 3. However, the new model (1) is more challenging to estimate than model (2)
due to the existence of both global parameters and local parameters. In fact, we will
demonstrate later that the model estimate of (2) is an intermediate result of the pro-
posed one-step backfitting estimate. In this article, we will also develop a generalized
likelihood ratio test to compare the proposed model with model (2) and illustrate its
use in Sect. 3.

Identifiability is a critical issue in many mixture models. Some well known results
of identifiability of finite mixture models include: mixture of univariate normals is
identifiable (Titterington et al. 1985), and finite mixture of linear regression models is
identifiable provided that covariates have a certain level of variability (Hennig 2000).
Based on Theorem 1 in Huang et al. (2013) and Theorem 3.2 in Wang et al. (2014),
we can get the following result on the identifiability of model (1).

Proposition 1 Assume that

(1) m j (x) are differentiable functions, j = 1, . . . , k.
(2) One of the following conditions holds:

(a) For any i �= j , σi �= σ j ;
(b) If there exists i �= j such that σi = σ j , then ‖mi (x) − m j (x)‖ + ‖m′

i (x) −
m′

j (x)‖ �= 0 for any x.
(3) The domain X of x is an interval in R.

Then, model (1) is identifiable.

2.2 Estimation procedure and asymptotic properties

2.2.1 Regression spline based estimator

Wefirst introduce a regression spline based estimator, which uses the regression spline
(Hastie et al 2003; de Boor 2001) to transfer the semiparametric mixture model to a
parametric mixture model. A cubic spline approximation for m j (x) can be expressed
as

m j (x) ≈
Q+4∑

q=1

β jq Bq(x), j = 1, . . . , k, (3)

where B1(x), ..., BQ+4(x) is a cubic spline basis and Q is the number of internal
knots. Many spline bases can be used here, such as a truncated power spline basis or
a B-spline basis. In this paper, we mainly focus on the B-spline basis.
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Semiparametric mixtures of nonparametric regressions 135

Based on the approximation (3), model (1) becomes

Y |X=x ∼
k∑

j=1

π jφ

⎛

⎝Y
∣∣
Q+4∑

q=1

β jq Bq(x), σ
2
j

⎞

⎠ .

The log likelihood of the collected data {(Xi ,Yi ), i = 1, .., n} is

�(π ,β, σ 2) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π jφ(Yi |
Q+4∑

q=1

β jq Bq(Xi ), σ
2
j )

⎫
⎬

⎭ ,

where π = {π1, . . . , πk−1}T , β = {β1, . . . ,βk}T , β j = (
β j1, . . . , β j,Q+4

)T , and
σ 2 = {σ 2

1 , . . . , σ 2
k }T . The parameters (π ,β, σ 2) can be estimated by the traditional

EM algorithm for mixtures of linear regression models.
The estimation method based on the regression spline approximation is easy to

implement, and therefore, will be used as an initial value for our other estimation
procedures.

2.2.2 One-step backfitting estimation procedure

In this section, we propose a one-step backfitting estimation procedure to achieve
the optimal convergence rates for both the global parameters and the nonparametric
component regression functions.

Let �∗(π ,m(·), σ 2) be the log-likelihood of the collected data {(Xi ,Yi ), i =
1, .., n}. That is,

�∗(π ,m(·), σ 2) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π jφ(Yi |m j (Xi ), σ
2
j )

⎫
⎬

⎭ , (4)

where π = {π1, ..., πk−1}T , m(·) = {m1(·), ...,mk(·)}T , and σ 2 = {σ 2
1 , ..., σ 2

k }T .
Since m(·) consists of nonparametric functions, (4) is not ready for maximization.
Next, we propose a one-step backfitting procedure. First, we estimate π , m and σ 2

locally by maximizing the following local log-likelihood function:

�1(π(x),m(x), σ 2(x)) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π jφ(Yi |m j , σ
2
j )

⎫
⎬

⎭ Kh(Xi − x), (5)

where Kh(t) = h−1K (t/h), K (·) is a kernel density function, and h is a tuning
parameter.

Let π̃(x), m̃(x), and σ̃ 2(x) be the maximizer of (5), which are in fact the model
estimates of (2) proposed byHuang et al. (2013).Note that, in (5), the global parameters
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136 S. Xiang and W. Yao

π and σ 2 are estimated locally. To improve the efficiency, we propose to update the
estimates of π and σ 2 by maximizing the following log-likelihood function:

�2(π , σ 2) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π jφ(Yi |m̃ j (Xi ), σ
2
j )

⎫
⎬

⎭ , (6)

which, compared to (4), replaces m j (·) by m̃ j (·).
Denote by π̂ and σ̂

2 the solution of maximizing (6). We can then further improve
the estimate of m(·) by maximizing the following local log-likelihood function:

�3(m(x)) =
n∑

i=1

log

⎧
⎨

⎩

k∑

j=1

π̂ jφ(Yi |m j , σ̂
2
j )

⎫
⎬

⎭ Kh(Xi − x). (7)

which, compared to (5), replaces π j and σ 2
j by π̂ j and σ̂ 2

j , respectively.

Let m̂(x) be the solution of (7), and we refer to π̂ , m̂(x), and σ̂
2 as the one-step

backfitting estimates. In Sect. 2.2.4, we show that the one-step backfitting estimates
achieve the optimal convergence rate for both the global parameters, and the nonpara-
metric mean functions. In (7), since π̂ j and σ̂ 2

j have root n convergence rate, unlike

m̃(x), m̂(x) does not need to adjust the uncertainty of estimatingπ j and σ 2
j . Therefore,

m̂(x) can have better estimation accuracy than m̃(x) proposed by Huang et al. (2013).

2.2.3 Computing algorithms

In this section, we propose a local EM-type algorithm (LEM) and a global EM-type
algorithm (GEM) to perform the one-step backfitting.

Local EM-type algorithm (LEM)
In practice, we usually want to evaluate unknown functions at a set of grid points,
which in this case, requires us to maximize local log-likelihood functions at a set
of grid points. If we simply employ an EM algorithm separately for different grid
points, the labels in the found estimators may change at different grid points, and we
may not be able to get smoothed estimated curves (Huang and Yao 2012). Next, we
propose a modified EM-type algorithm, which estimates the nonparametric functions
simultaneously at a set of grid points. Let {ut , t = 1, . . . , N } be a set of grid points
where some unknown functions are evaluated, and N be the number of grid points.

Step 1: modified EM-type algorithm to maximize �1 in (5)
In Step 1, we use the modified EM-type algorithm of Huang et al. (2013) to maximize
�1 and obtain the estimates π̃(·), m̃(·), and σ̃ 2(·). Specifically, at the (l+1)th iteration,
E-step Calculate the expectations of component labels based on estimates from the
lth iteration:

p(l+1)
i j = π

(l)
j (Xi )φ(Yi |m(l)

j (Xi ), σ
2(l)
j (Xi ))

∑k
j=1 π

(l)
j (Xi )φ(Yi |m(l)

j (Xi ), σ
2(l)
j (Xi ))

, i = 1, . . . , n, j = 1, . . . , k.
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M-step Update the estimates

π
(l+1)
j (x) =

∑n
i=1 p

(l+1)
i j Kh(Xi − x)

∑n
i=1 Kh(Xi − x)

, (8)

m(l+1)
j (x) =

∑n
i=1 p

(l+1)
i j Yi Kh(Xi − x)

∑n
i=1 p

(l+1)
i j Kh(Xi − x)

, (9)

σ
2(l+1)
j (x) =

∑n
i=1 p

(l+1)
i j (Yi − m(l+1)

j (x))2Kh(Xi − x)
∑n

i=1 p
(l+1)
i j Kh(Xi − x)

, (10)

for x ∈ {ut , t = 1, . . . , N }. We then update π
(l+1)
j (Xi ),m

(l+1)
j (Xi ), and σ

2(l+1)
j (Xi ),

i = 1, . . . , n, by linear interpolating π
(l+1)
j (ut ), m

(l+1)
j (ut ), and σ

2(l+1)
j (ut ), t =

1, . . . , N , respectively.
Note that in the M-step, the nonparametric functions are estimated simultaneously

at a set of grid points, and therefore, the classification probabilities in the the E-step
can be estimated globally to avoid the label switching problem (Celeux et al. 2000;
Stephens 2000; Yao 2012, 2015; Yao and Lindsay 2009).

Step 2: EM algorithm to maximize �2 in (6)
In Step 2, given m̃ j (x) from Step 1, a regular EM algorithm can be used to maximize
�2 and update the estimates of π and σ 2 as π̂ and σ̂

2. At the (l + 1)th iteration,
E-step Calculate the expectations of component labels based on the estimates from
the lth iteration:

p(l+1)
i j = π

(l)
j φ(Yi |m̃ j (Xi ), σ

2(l)
j )

∑k
j=1 π

(l)
j φ(Yi |m̃ j (Xi ), σ

2(l)
j )

, i = 1, . . . , n, j = 1, . . . , k.

M-step Update the estimates

π
(l+1)
j =

∑n
i=1 p

(l+1)
i j

n
,

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
i j (Yi − m̃ j (Xi ))

2

∑n
i=1 p

(l+1)
i j

.

The ascent property of the above algorithm follows from the theory of the ordinary
EM algorithm.

Step 3: Modified EM-type algorithm to maximize �3 in (7)
In Step 3, given π̂ and σ̂

2 fromStep 2, wewould thenmaximize �3 to find the estimates
m̂(x). At the (l + 1)th iteration,
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E-step Calculate the expectations of component labels based on estimates from the
lth iteration:

p(l+1)
i j = π̂ jφ(Yi |m(l)

j (Xi ), σ̂
2
j )

∑k
j=1 π̂ jφ(Yi |m(l)

j (Xi ), σ̂
2
j )

, i = 1, . . . , n, j = 1, . . . , k. (11)

M-step Update the estimate

m(l+1)
j (x) =

∑n
i=1 p

(l+1)
i j Yi Kh(Xi − x)

∑n
i=1 p

(l+1)
i j Kh(Xi − x)

,

for x ∈ {ut , t = 1, ..., N }. Similar to Step 1, we update the estimates at a set of
grid points first, and then update m(l+1)

j (Xi ), i = 1, . . . , n, by linear interpolating

m(l+1)
j (ut ), t = 1, . . . , N .

Global EM-type algorithm (GEM)
To improve the estimation efficiency, one might further iterate Step 1 to Step 3 until
convergence. Next, we propose a global EM-type algorithm (GEM) to approximate
such iteration, but with much less computation. At the (l + 1)th iteration,
E-step Calculate the expectations of component labels based on estimates from the
lth iteration:

p(l+1)
i j =

π
(l)
j φ
(
Yi |m(l)

j (Xi ), σ
2(l)
j

)

∑k
j=1 π

(l)
j φ
(
Yi |m(l)

j (Xi ), σ
2(l)
j

) , i = 1, . . . , n, j = 1, . . . , k.

M-step Simultaneously update the estimates

π
(l+1)
j =

∑n
i=1 p

(l+1)
i j

n
,

m(l+1)
j (x) =

∑n
i=1 p

(l+1)
i j Yi Kh(Xi − x)

∑n
i=1 p

(l+1)
i j Kh(Xi − x)

,

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
i j (Yi − m(l+1)

j (Xi ))
2

∑n
i=1 p

(l+1)
i j

,

for x ∈ {ut , j = 1, . . . , N }. We then update m(l+1)
j (Xi ), i = 1, ..., n by linear

interpolating m(l+1)
j (ut ), t = 1, . . . , N .

2.2.4 Asymptotic properties

Next, we investigate the asymptotic properties of the proposed one-step backfitting
estimates and the asymptotic ascent properties of the two proposed EM-type algo-
rithms.
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Let θ = (mT ,πT , (σ 2)T )T , β = (πT , (σ 2)T )T , then θ = (mT ,βT )T . Define

�(θ , y) = log
k∑

j=1

π jφ(y|m j , σ
2
j ), (12)

and let

Iθ (x) = −E

[
∂2�(θ , y)

∂θ∂θT
|X = x

]
, Iβ(x) = −E

[
∂2�(θ, y)

∂β∂βT
|X = x

]
,

Im(x) = −E

[
∂2�(θ , y)

∂m∂mT
|X = x

]
,

Iβm(x) = −E

[
∂2�(θ , y)

∂β∂mT
|X = x

]
,
(u|x) = E

[
∂�(θ(x), y)

∂m
|X = u

]
.

Define

κl =
∫

t l K (t)dt, νl =
∫

t l K 2(t)dt.

Under further conditions defined in the Appendix, the consistency and asymptotic
normality of π̂ and σ̂

2 are established in the next theorem.

Theorem 1 Suppose that conditions (C1) and (C3)|(C10) in the Appendix are satis-
fied, then √

n(β̂ − β)
D→ N (0, B−1
B−1),

where B = E{Iβ(X)}, 
 = Var{∂�(θ(X),Y )/∂β − �(X,Y )}, �(x, y) =
Iβmϕ(x, y), and ϕ(x, y) is a k × 1 vector consisting of the first k elements of
I−1
θ (x)∂�(θ(x), y)/∂θ .

Based on the above theorem, we can see that the proposed one-step backfitting esti-
mator of the global parameters have achieved the optimal square root n convergence
rate.

The next theorem gives the asymptotic property of m̂(·).
Theorem 2 Suppose that conditions (C2)|(C10) in the Appendix are satisfied, then

√
nh(m̂(x) − m(x) − �m(x) + op(h

2))
D→ N (0, f −1(x)I−1

m (x)ν0),

where f (·) is the density of X,�m(x) is a k×1 vector consisting of the first k elements
of �(x) with

�(x) = I−1
m (x)

{
1

2

′′(x |x) + f −1(x) f ′(x)
′(x |x)

}
κ2h

2.

Based on the above theorem, we can see that m̂(x) has the same asymptotic properties
as if β were known, since β̂ has faster convergence rate than m̂(x).

The asymptotic ascent properties of the proposed EM-type algorithms are provided
in the following theorem.
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140 S. Xiang and W. Yao

Theorem 3 (i) For the modified EM-type algorithm (Step 1) to maximize �1, given
condition (C2),

lim inf
n→∞ n−1

[
�1(θ

(l+1)(x)) − �1(θ
(l)(x))

]
≥ 0

in probability, for any given point x ∈ X , where �1(·) is defined in (5).
(ii) For the modified EM-type algorithm (Step 3) to maximize �3, given condition

(C2),

lim inf
n→∞ n−1

[
�3(m(l+1)(x)) − �3(m(l)(x))

]
≥ 0

in probability, for any given point x ∈ X , where �3(·) is defined in (7).
(iii) For the GEM algorithm, we have

lim inf
n→∞ n−1

[
�∗(m(l+1)(·),π (l+1), σ 2(l+1)) − �∗(m(l)(·),π (l), σ 2(l))

]
≥ 0

in probability, for any given point x ∈ X , where �∗(·) is defined in (4).

2.3 Hypothesis testing

Huang et al. (2013) proposed a nonparametric mixture of regression models where
mixing proportions, means, and variances are all unknown but smooth functions of
a covariate. Compared to Huang et al. (2013), our model can be more efficient by
assuming the mixing proportions and variances to be constants. Then, a natural ques-
tion to ask is whether or not the mixing proportions and variances indeed depend on
the covariate. This amounts to testing the following hypothesis:

H0 :π j (x) ≡ π j , j = 1, . . . , k − 1;
σ 2
j (x) ≡ σ 2

j , j = 1, . . . , k;
π j and σ 2

j are unknown in (0, 1) and R
+.

H1 :π j (x) or σ 2
j (x) is not constant for some j.

Next, we propose to use the idea of the generalized likelihood ratio test (Fan et al.
2001) to compare model (1) with model (2).

Let �n(H0) and �n(H1) be the log-likelihood functions computed under the null
and alternative hypothesis, respectively. Then, we can construct a likelihood ratio test
statistic

T = �n(H1) − �n(H0). (13)

Note that this likelihood ratio statistic is different from the parametric likelihood ratio
statistics, since thenull and alternative are both semiparametricmodels, and thenumber
of parameters under H0 or H1 are undefined. The following theorem establishes the
Wilks types of results for (13), that is, the asymptotic null distribution is independent
of the nuisance parameters π and σ , and the nuisance nonparametric mean functions
m(x).
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Semiparametric mixtures of nonparametric regressions 141

Theorem 4 Suppose that conditions (C9)–(C13) in the Appendix hold and that
nh4 → 0 and nh2 log(1/h) → ∞, then

rK T
a∼ χ2

δ ,

where rK = [K (0) − 0.5
∫
K 2(t)dt]/ ∫ [K (t) − 0.5K ∗ K (t)]2dt, δ = rK (2k −

1)|X |[K (0) − 0.5
∫
K 2(t)dt]/h, |X | denotes the length of the support of X, and

K ∗ K is the 2nd convolution of K (·).
Theorem 4 unveils a new Wilks type of phenomenon, and provides a simple and

useful method for semiparametric inferences. We will demonstrate its application in
Sect. 3.

3 Examples

3.1 Simulation study

In this section, we use a simulation study to investigate the finite sample performance
of the proposed regression spline estimate (Spline), the one-step backfitting estimate
using local EM-type algorithm (LEM), and the global EM-type algorithm (GEM),
and compare them with the traditional mixture of linear regressionss estimate (MLR),
and the nonparametric mixture of regression models (NMR, Huang et al. 2013). For
the regression spline, we use Q = 5, where Q is the number of internal knots. For
LEM, GEM and NMR, we use both the true value and the regression spline estimate
as initial values, denoted by (T ) and (S), respectively.

We conduct a simulation study for a two-component semiparametric mixture of
regression models:

π1 = 0.5 or π1 = 0.7,

m1(x) = 4 − sin(2πx) and m2(x) = 1.5 + cos(3πx),

σ 2
1 = 0.09 and σ 2

2 = 0.16.

The covariate X is generated from the one-dimensional uniform distribution in [0, 1],
and the Gaussian kernel is used in the simulation. The sample sizes n = 200 and
n = 400 are conducted over 500 repetitions.

The performance of the estimates of the mean functions m(x) is measured by the
square root of the average squared errors (RASE),

RASE2
m = N−1

2∑

j=1

N∑

t=1

[
m̂ j (ut ) − m j (ut )

]2
,

where {ut , t = 1, . . . , N } are a set of grid points at which the unknown functions are
evaluated. In our simulation, we set N = 100. To compare between model (1) and
the nonparametric mixture of regression models proposed by Huang et al. (2013), we
also report the RASE of π and σ 2, denoted by RASEπ and RASEσ 2 , respectively.
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Bandwidth plays an important role in the estimation of m(·). There are ways to
calculate the theoretical optimal bandwidth, but in practice, data driven methods, such
as cross-validation (CV), are popularly used. Please see Zhang and Yang (2015) and
the reference therein for the application and properties of cross-validation. LetD be the
full data set, and divideD into a training setRl and a test setTl . That is,Rl ∪Tl = D
for l = 1, ..., L . We use the training setRl to obtain the estimates {π̂ , m̂(·), σ̂ 2}, then
consider a likelihood version CV, which is defined by

CV(h) =
L∑

l=1

∑

t∈Tl

log

⎧
⎨

⎩

k∑

j=1

π̂ jφ(yt |m̂ j (xt ), σ̂
2
j )

⎫
⎬

⎭ .

In the simulation, we set L = 10 and randomly partition the data. We repeat the
procedure 30 times, and take the average of the selected bandwidths as the optimal
bandwidth, denoted by ĥ. In the simulation, we consider three different bandwidths,
ĥ × n−2/15, ĥ, and 1.5ĥ, which correspond to under-smoothing (US), appropriate
smoothing (AS), and over-smoothing (OS), respectively.

Tables 1 and 2 report the average of RASEπ , RASEm , and RASEσ 2 , for π1 = 0.5
and π1 = 0.7, respectively. All the values are multiplied by 100. From Tables 1 and 2,
we can see that LEM, GEM, and the regression spline estimates give better results than
the mixture of linear regressions estimate. Compared to NMR, model (1) improves
the efficiency of the estimation of mixing proportions and variances, and provides
slightly better estimates for the mean functions. In addition, both LEM and GEM
provide better results for the mean functions than the regression spline estimate when
the sample size is small. We further notice that LEM(S) and GEM(S) provide similar
results to LEM(T) and GEM(T). Therefore, the spline estimate provides good initial
values for other estimates.

From Tables 1 and 2, LEM and GEM have similar performance in terms of model
fitting. However, in terms of computation time, GEM has an absolute advantage over
LEM. For example, on a personal laptop with an i7-3610QM CPU and 8GB of RAM,
the average calculation time (in s) for each repetition when n = 200 is 0.072 and
0.017 for LEM and GEM, respectively, and 0.105 and 0.028 when n = 400.

Next, we test the accuracy of the standard error estimation and the confidence
interval construction for π1, σ1 and σ2 via a conditional bootstrap procedure. Given
the covariate X = x , the response Y ∗ can be generated from the estimated distribution∑k

j=1 π̂ jφ(Y |m̂ j (x), σ̂ 2
j ). For the simplicity of presentation, we only report the results

for GEM(T).We apply the proposed estimation procedure to each of the 200 bootstrap
samples, and further obtain the confidence intervals.

Table 3 reports the results from the bootstrap procedure. SD contains the standard
deviation of 500 replicates, and can be considered as true standard errors. SE and STD
contain the mean and standard deviation of the 500 estimated standard errors based on
the conditional bootstrap procedure. In addition, the coverage probability of the 95%
confidence intervals based on the estimated standard errors are also reported. From
Table 3 we can see that the bootstrap procedure estimates the true standard error quite
well, since all the differences between the true value and the estimates are less than
two standard errors of the estimates. The coverage probabilities are satisfactory for
π1, but a bit low for σ1 and σ2, especially for over-smoothing bandwidth.
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Table 1 The average of RASEπ , RASEσ2 & RASEm when π1 = 0.5 (true values times 100)

n h LEM(T) GEM(T) LEM(S) GEM(S) Spline MLR NMR(T) NMR(S)

RASEπ 2.82 2.84 2.83 2.84 2.85 4.40 13.38 13.37

US RASEσ2 4.34 4.39 4.35 4.40 2.72 65.62 9.88 9.94

RASEm 20.81 20.84 20.98 21.02 39.98 87.32 20.48 21.35

RASEπ 2.83 2.81 2.84 2.81 2.83 4.37 9.55 9.53

200 AS RASEσ2 2.69 2.73 2.70 2.73 2.78 63.29 12.62 12.66

RASEm 17.72 17.67 17.73 17.67 45.60 87.13 18.77 19.52

RASEπ 2.79 2.69 2.78 2.69 2.76 4.57 8.39 8.38

OS RASEσ2 2.73 2.42 2.73 2.42 2.74 64.52 20.77 20.81

RASEm 23.12 22.99 23.14 22.99 32.33 87.48 25.30 25.39

RASEπ 2.02 2.00 2.03 2.00 1.98 3.39 10.56 10.54

US RASEσ2 2.88 2.91 2.89 2.91 1.80 66.15 7.99 7.98

RASEm 15.76 15.78 15.77 15.78 15.10 85.88 15.82 15.85

RASEπ 2.03 2.02 2.04 2.02 2.03 3.41 7.35 7.35

400 AS RASEσ2 1.87 1.88 1.87 1.88 1.77 65.54 9.87 9.89

RASEm 13.20 13.19 13.20 13.19 17.65 85.77 14.11 14.15

RASEπ 2.19 2.15 2.20 2.15 2.14 3.38 6.54 6.54

OS RASEσ2 1.92 1.76 1.92 1.76 1.85 65.46 16.21 16.22

RASEm 16.86 16.78 16.86 16.78 15.85 85.73 18.56 18.56

We also apply the bootstrap procedure to investigate the point-wise coverage prob-
ability of the mean functions, at a set of evenly distributed grid points. Table 4 shows
the results of the 95% confidence interval for the two-component mean functions.
From the table, we can see that the mean function of the first component tends to have
higher coverage probability than the second component, especially for over-smoothing
bandwidth. In addition, the coverage probability is generally lower than the nominal
level for over-smoothing bandwidth.

Next, we assess the performance of the testing procedure proposed in Sect. 2.3.
Under the null hypothesis, the mixing proportion π1 and variances σ 2

1 and σ 2
2 are

constants. We compute the distribution of T with n = 200 and n = 400 via 500
repetitions, and compare it with the χ2-approximation. The histogram of the null
distribution is shown in Fig. 1, where the solid line corresponds to a density of the
χ2-distribution with degrees of freedom δ defined in Theorem 4. Figure 2 shows the
Q-Q plot for the two cases. From Figs. 1 and 2, the finite sample null distribution is
quite close to a χ2-distribution with degrees of freedom δ, especially for the case of
n = 400.

3.2 Real data applications

Example 1 (The US house price index data) In this section, we illustrate the proposed
methodologies with an empirical analysis of US house price index data (sample size
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Table 2 The average of RASEπ , RASEσ2 & RASEm when π1 = 0.7 (true values times 100)

n h LEM(T) GEM(T) LEM(S) GEM(S) Spline MLR NMR(T) NMR(S)

RASEπ 2.66 2.68 2.66 2.68 2.66 4.07 11.54 11.53

US RASEσ2 5.45 5.58 5.48 5.58 3.50 62.56 11.25 11.33

RASEm 23.57 23.63 23.75 24.43 48.12 90.04 23.09 23.49

RASEπ 2.56 2.54 2.55 2.54 2.58 4.21 8.35 8.36

200 AS RASEσ2 3.27 3.35 3.29 3.35 3.84 64.35 14.40 14.53

RASEm 20.10 20.09 20.11 20.09 47.52 90.16 21.38 21.41

RASEπ 2.74 2.64 2.88 2.77 2.73 4.18 7.30 7.42

OS RASEσ2 3.10 2.81 3.13 2.83 3.60 64.13 22.09 22.19

RASEm 26.18 25.99 27.02 26.80 48.17 90.15 28.82 29.74

RASEπ 1.79 1.80 1.80 1.80 1.78 3.16 9.24 9.24

US RASEσ2 3.74 3.81 3.74 3.81 2.16 66.98 9.23 9.24

RASEm 18.00 18.03 18.00 18.03 18.91 87.49 17.93 17.99

RASEπ 1.87 1.86 1.87 1.86 1.89 3.20 6.45 6.45

400 AS RASEσ2 2.26 2.27 2.26 2.27 2.14 65.31 11.29 11.32

RASEm 14.92 14.90 14.92 14.90 19.67 87.57 16.02 16.00

RASEπ 1.94 1.89 1.94 1.89 1.87 2.95 5.59 5.59

OS RASEσ2 2.27 2.09 2.27 2.09 2.21 65.44 18.02 18.03

RASEm 19.48 19.41 19.48 19.41 19.79 87.12 21.59 21.63

Table 3 Standard errors and coverage probabilities

h π1 σ1 σ2

SD SE(STD) 95% SD SE(STD) 95% SD SE(STD) 95%

n = 200 US 0.037 0.036 (0.002) 94.11 0.014 0.013 (0.003) 88.82 0.024 0.023 (0.004) 91.09

(0.5, 0.5) AS 0.037 0.036 (0.002) 93.40 0.014 0.013 (0.002) 94.00 0.029 0.022 (0.004) 91.20

OS 0.038 0.035 (0.002) 90.60 0.014 0.015 (0.002) 96.20 0.022 0.025 (0.004) 97.20

n = 400 US 0.027 0.025 (0.001) 94.40 0.010 0.009 (0.001) 94.80 0.018 0.017 (0.003) 96.20

(0.5, 0.5) AS 0.026 0.025 (0.001) 93.80 0.009 0.009 (0.001) 94.00 0.016 0.016 (0.002) 96.40

OS 0.026 0.025 (0.001) 93.20 0.009 0.010 (0.001) 93.80 0.016 0.018 (0.002) 94.80

n = 200 US 0.031 0.032 (0.002) 94.80 0.011 0.011 (0.002) 90.20 0.035 0.029 (0.009) 83.20

(0.7, 0.3) AS 0.033 0.032 (0.002) 94.60 0.011 0.011 (0.001) 96.40 0.028 0.027 (0.006) 85.60

OS 0.033 0.032 (0.002) 93.20 0.013 0.013 (0.002) 89.60 0.032 0.033 (0.008) 97.00

n = 400 US 0.023 0.023 (0.001) 94.80 0.008 0.008 (0.001) 94.20 0.023 0.023 (0.004) 92.20

(0.7, 0.3) AS 0.025 0.023 (0.001) 93.40 0.008 0.008 (0.001) 95.00 0.021 0.021 (0.003) 93.40

OS 0.023 0.023 (0.001) 94.60 0.009 0.009 (0.001) 83.20 0.021 0.023 (0.004) 96.20

n = 141) that are introduced in Sect. 1. GDP is a well known measure of the size of
a nation’s economy, as it recognizes the total goods and services produced within a
nation in a given period, and HPI is known as a measure of a nation’s average housing
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Table 4 Pointwise coverage probabilities

h 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889

US m1 92.00 93.00 93.80 92.40 93.40 93.40 94.20 92.80

n = 200 m2 90.00 92.20 95.20 93.40 94.20 94.40 92.80 93.20

AS m1 92.20 91.40 90.80 87.60 90.00 91.40 93.00 90.40

(0.5, 0.5) m2 85.40 89.40 85.00 89.00 87.00 84.20 89.40 89.40

OS m1 92.00 77.00 80.80 83.00 87.00 80.80 79.60 89.80

m2 58.60 80.20 53.60 76.60 73.60 48.80 80.80 73.00

US m1 93.40 94.40 95.60 93.40 93.00 95.80 96.00 94.00

n = 400 m2 97.20 94.40 94.20 91.60 93.40 94.60 95.00 94.80

AS m1 91.40 93.00 93.60 91.80 90.60 92.40 92.00 91.60

(0.5, 0.5) m2 89.80 91.80 87.40 90.00 88.40 88.80 89.40 90.40

OS m1 88.80 76.60 81.60 89.00 86.00 80.80 79.60 88.80

m2 61.80 82.20 51.40 78.60 79.80 48.60 80.00 73.80

US m1 91.40 97.00 93.40 93.60 93.00 94.80 94.60 93.40

n = 200 m2 89.00 93.20 92.20 91.00 92.80 92.40 93.40 90.80

AS m1 92.40 88.60 91.40 90.20 86.40 89.60 89.60 89.20

(0.7, 0.3) m2 82.60 89.00 89.40 86.20 84.20 84.20 87.20 86.40

OS m1 91.40 62.20 67.20 82.80 82.00 67.00 62.80 90.00

m2 60.60 83.80 63.80 81.60 76.00 57.20 78.20 76.00

US m1 92.40 94.20 93.60 94.60 93.40 96.80 94.00 95.40

n = 400 m2 93.40 95.60 93.00 94.00 93.60 93.60 93.80 93.00

AS m1 91.80 90.80 89.40 91.20 91.80 92.20 88.80 92.20

(0.7, 0.3) m2 83.60 89.00 87.20 89.20 88.60 85.80 88.20 88.60

OS m1 90.40 60.80 67.00 87.20 86.60 68.20 62.00 87.20

m2 56.40 81.00 60.40 78.60 79.60 56.80 81.00 74.00
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Fig. 1 Histogram of Tn and χ2-approximation of Tn : a n = 200, b n = 400
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Fig. 2 Q–Q plot: a n = 200, b n = 400
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Fig. 3 a Scatterplot of US house price index data; b estimated mean functions with 95% confidence
intervals and a clustering result

price in repeat sales. It is believed that the housing price and GDP are correlated, and
so it is of interest to study how GDP growth rate helps to predict HPI change.

First, a two-component mixture of nonparametric regression models is fitted to the
data. For real data sets, we use Monte-Carlo cross-validation (MCCV) (Shao 1993)
to select the bandwidths. In MCCV, the data are randomly partitioned into disjoint
training subsets with size n(1 − p) and test subsets with size np, where p is the
percentage of data used for testing. The procedure is repeated for 100 times, and we
take the average as the selected bandwidth. For estimation and testing purpose, we
use MCCV with p = 10%, and the selected bandwidth is 0.030. Figure 3b contains
the estimated mean functions and their 95% point-wise confidence intervals through
the conditional bootstrap procedure, and the 95% confidence interval for π1, σ1 and
σ2 are (0.347, 0.518), (0.009, 0.020) and (0.004, 0.008), respectively. Figure 3b also
reports the hard-clustering results, denoted by dots and squares, respectively, for the
two components. The hard-clustering results are obtained bymaximizing classification
probabilities {pi1, pi2} for all i = 1, . . . , n. It can be checked that the dots in the lower
cluster are mainly from Jan 1990 to Sep 1997, while the squares in the upper cluster
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Table 5 Average (standard deviation) of MSPE

p = 10% p = 20% p = 25% p = 33%

US House Price Index Data

Model (1) 0.086 (0.021) 0.086 (0.014) 0.085 (0.012) 0.086 (0.011)

NMR (Huang et al. 2013) 0.089 (0.025) 0.090 (0.018) 0.089 (0.015) 0.089 (0.013)

NO data

Model (1) 0.930 (0.285) 1.011 (0.194) 1.033 (0.182) 1.037 (0.153)

NMR (Huang et al. 2013) 1.330 (0.357) 1.446 (0.246) 1.511 (0.233) 1.504 (0.200)
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Fig. 4 a Scatterplot of NO data; b estimatedmean functions with 95% confidence intervals and a clustering
result

are mainly from Oct 1997 to Dec 2002, when the economy experienced an internet
boom and bust. In addition, it can be seen that in the first cycle of lower component,
GDP growth has an overall positive impact on HPI change. However, in the second
cycle of the upper component, GDP growth has a negative impact on HPI change, if
GDP growth is smaller than 0.3; when GDP growth is larger than 0.3, it then has a
similar positive impact on HPI change as the first cycle.

To examine whether the mixing proportions and variances are indeed constant, we
apply the generalized likelihood ratio test developed in Sect. 2.3. The p-value is 0.331,
and shows that model (1) is more appropriate for the data. To evaluate the prediction
performance of the proposed model and compare it to the NMR model proposed by
Huang et al. (2013), in Table 5, we use MCCV with repetition time 500 to report the
average and standard deviation of themean squared prediction error (MSPE) evaluated
at the testing sets. It can be seen that the prediction performance ofmodel (1) is slightly
better than that of the NMR model (Huang et al. 2013).

Example 2 (NO data) This data set gives the equivalence ratio, a measure of the
richness of the air-ethanol mix in an engine against the concentration of nitrogen
oxide emissions in a study using pure ethanol as a spark-ignition engine fuel. The
data set contains 99 observations and is presented in Hurvich et al. (1998). Figure 4a
shows the scatter plot of the data, which clearly indicates two different nitrous oxide

123



148 S. Xiang and W. Yao

concentration dependencies, with no clear linear trend. As a result, a two-component
mixture of nonparametric regression models is fitted to the data.

Similar to the above example, the selected bandwidth is 0.091 based on
MCCV with p = 10%. The confidence intervals for parameter estimates are
(0.395, 0.608), (0.005, 0.012), (0.025, 0.053) for π1, σ1 and σ2, respectively. Fig-
ure 4b contains the estimated mean functions and their 95% point-wise confidence
intervals through the bootstrap procedure. The p-value of the generalized likelihood
ratio test is 0.219, indicating that model (1) is the preferred model. Table 5 reports the
average and standard deviation of MSPE evaluated at the testing sets based onMCCV.
Based on Table 5, the new model has better prediction performance than the NMR
model.

4 Discussion

Motivated by a US house index data, in this article, we proposed a new class of semi-
parametric mixture of regression models, where mixing proportions and variances are
constants, but the component regression functions are smooth functions of a covari-
ate. The identifiability of the proposed model is established and a one-step backfitting
estimation procedure is proposed to achieve the optimal convergence rate for both the
global parameters and the nonparametric regression functions. The proposed regres-
sion spline estimate is simple to calculate and can be easily extended to some other
semiparametric and nonparametric mixture of regression models (Young and Hunter
2010; Huang et al. 2013; Huang and Yao 2012). But it requires more research to derive
the asymptotic results for such regression spline based estimators for mixture models.
A generalized likelihood ratio test has been proposed for semiparametric inferences.

When the dimension of the predictors is high, due to the curse of dimensionality, it
is unpractical to estimate the component regression functions fully nonparametrically.
Therefore, it is our interest to further extend the proposed mixture of nonparametric
regression models to some other nonparametric or semiparametric models, such as
mixture of partial linear regression models, mixture of additive models, and mixture
of varying coefficient partial linear models.

In this paper, we assume that the number of components is known. However, in
some applications, it might be infeasible to assume a known number of components
in advance. Therefore, more research is needed to select the number of components
for the proposed semiparametric mixture model. One possible way is to use AIC or
BIC to choose the number of components. However, it is not clear how to define
the degree of freedom for a semiparametric mixture model. Similar to Huang et al.
(2013), onemight also fit a mixture of linear regression using local data and choose the
number of components based on traditional AIC or BIC. In addition, as one reviewer
pointed out that when the number of components, k, is too large, the variance of model
parameter estimates may be very large and the asymptotic results might not hold for
the finite-sample setting. In this case, one might use a bootstrap procedure to estimate
the standard errors of parameter estimates. Furthermore, it will be also interesting
to investigate whether there are any minimax properties of the proposed estimation
procedure.
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Appendix

In this section, the brief proofs of Theorems 1, 2 and 4 are presented, and please refer
to the supplement file for more detailed proof. The conditions required by Theorems
1, 2, 3 and 4 are listed below. They are not the weakest sufficient conditions, but could
easily facilitate the proofs.

Technical conditions

(C1) nh4 → 0 and nh2 log(1/h) → ∞ as n → ∞ and h → 0.
(C2) nh → ∞ as n → ∞ and h → 0.
(C3) The sample {(Xi ,Yi ), i = 1, . . . , n} are independently and identically dis-

tributed from f (x, y)with finite sixth moments. The support for x , denoted by
X ∈ R, is bounded and closed.

(C4) f (x, y) > 0 in its support and has continuous first derivative.
(C5) |∂3�(θ , X,Y )/∂θi∂θ j∂θk | ≤ Mi jk(X,Y ), where E(Mi jk(X,Y )) is bounded

for all i, j, k and all X,Y .
(C6) The unknown functions m j (x), j = 1, . . . , k, have continuous second deriva-

tive.
(C7) σ 2

j > 0 and π j > 0 for j = 1, . . . , k and
∑k

j=1 π j = 1.

(C8) E(X2r ) < ∞ for some ε < 1 − r−1, n2ε−1h → ∞.
(C9) Iθ (x) and Im(x) are positive definite.

(C10) The kernel function K (·) is symmetric, continuous with compact support.
(C11) The marginal density f (x) of X is Lipschitz continuous and bounded away

from 0. X has a bounded support X .
(C12) t3K (t) and t3K ′(t) are bounded and

∫
t4K (t)dt < ∞.

(C13) E |qθ |4 < ∞, E |qm |4 < ∞, where ∂�(θ(X),Y )
∂θ

= qθ , and
∂�(θ(X),Y )

∂m = qm .

Proof of Theorem 1. Define β̂
∗ = √

n(β̂ − β), where β̂ maximizes �2(β) in (6). Let

�(m̃(Xi ),β,Yi ) = log

⎧
⎨

⎩

k∑

j=1

π jφ(Yi |m̃ j (Xi ), σ
2
j

⎫
⎬

⎭ ,

�(m̃(Xi ),β + β∗/
√
n,Yi ) = log

⎧
⎨

⎩

k∑

j=1

(π j + π∗
j /

√
n)φ(Yi |m̃ j (Xi ), σ

2
j + σ 2∗

j /
√
n

⎫
⎬

⎭ .
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Since β̂ maximizes �2, it is easy to see that β̂
∗
maximizes

�n(β
∗) =

n∑

i=1

{
�(m̃(Xi ),β + β∗/

√
n,Yi ) − �(m̃(Xi ),β,Yi

}

= Anβ
∗ + 1

2
β∗T Bnβ

∗ + op(‖β∗‖2),

where An =
√

1
n

∑n
i=1

∂�(m̃(Xi ),β,Yi )
∂β

and Bn = 1
n

∑n
i=1

∂2�(m̃(Xi ),β,Yi )
∂β∂βT . It can be

easily seen that Bn = −B + op(1) with B = E{Iβ(X)}, therefore, by quadratic
approximation lemma,

β̂
∗ = B−1An + op(1). (14)

Define R1n =
√

1
n

∑n
i=1

∂2�(m(Xi ),β,Yi )
∂β∂mT (m̃(Xi ) − m(Xi )), then An =

√
1
n

∑n
i=1

∂�(m(Xi ),β,Yi )
∂β

+ R1n + Op(

√
1
n ‖m̃ − m‖2∞). Let ϕ(Xt ,Yt ) be a k × 1 vector whose

elements are the first k entries of I−1
θ (Xt )

∂�(θ(Xt ),Yt )
∂θ

. From assumption (C1), we know
that Op{n1/2[γnh2 + γ 2

n log1/2(1/h)]} = op(1), where γn = (nh)−1/2. By similar
argument as the proof of Theorem 2 in Huang et al. (2013), it can be shown that
θ̃(Xi ) − θ(Xi ) = 1

n f −1(Xi )I
−1
θ (Xi )

∑n
t=1

∂�(θ(Xi ),Yt )
∂θ

Kh(Xt − Xi ) + Op{γnh2 +
γ 2
n log1/2(1/h)}. Since m(Xi ) − m(Xt ) = O(Xi − Xt ),

R1n = n−3/2
n∑

t=1

n∑

i=1

∂2�(m(Xi ),β,Yi )

∂β∂mT
f −1(Xi )ϕ(Xt ,Yt )Kh(Xi−Xt )+Op(n

1/2h2)

= R2n + Op(n
1/2h2).

It can be shown that E[ 1n
∑n

i=1
∂2�(m(Xi ),β,Yi )

∂β∂mT f −1(Xi )Kh(Xi − Xt )] = Iβm(Xt ). Let

�(Xt ,Yt ) = Iβm(Xt )ϕ(Xt ,Yt ), and Rn3 = −n−1/2∑n
j=1 �(Xt ,Yt ), then Rn2 −

Rn3
P→ 0, and therefore

An =
√
1

n

n∑

i=1

{
∂�(m(Xi ),β,Yi )

∂β
− �(Xi ,Yi )

}
+ op(1),

given nh4 → 0. Let 
 = Var{ ∂�(θ(X),Y )
∂β

− �(X,Y )}, then Var(An) = 
. It can be
easily seen that E(An) = 0, therefore by (14),

√
n(β̂ − β)

D→ N (0, B−1
B−1).

��
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Proof of Theorem 2. Define m̂∗ = √
nh(m̂(x) − m(x)), where m̂(x) maximizes (7).

It can be shown that

m̂∗
(x) = f (x)−1 Im(x)−1 Ŝn + op(1), (15)

where

Ŝn =
√
h

n

n∑

i=1

∂�(m(x), β̂,Yi )

∂m
Kh(Xi − x). (16)

Notice that

Ŝn =
√
h

n

n∑

i=1

∂�(m(x),β,Yi )

∂m
Kh(Xi − x) +

√
h

n
(β̂ − β)

×
n∑

i=1

∂2�(m(x),β,Yi )

∂m∂βT
Kh(Xi − x) + op(1)

≡ Sn + Dn + op(1).

where Sn =
√

h
n

∑n
i=1

∂�(θ(x),Yi )
∂θ

Kh(Xi − x). Since
√
n(β̂ − β) = Op(1) and

1
n

∑n
i=1

∂2�(m(x),β,Yi )
∂m∂βT Kh(Xi − x) = − f (x)I Tβm(x) + op(1), then Dn = √

n(β̂ −
β)

√
h 1
n

∑n
i=1

∂2�(m(x),β,Yi )
∂m∂βT Kh(Xi − x) = −√

h f (x)I Tβm(x) + op(1). Thus, from

(15), m̂∗
(x) = f (x)−1 Im(x)−1Sn + op(1). Let 
(u|x) = E[ ∂�(m(x),β,Y )

∂m |X = u], it
can be shown that

E(Sn) = √
nh

[
1

2
f (x)
′′(x |x) + f ′(x)
′(x |x)

]
κ2h

2,Var(Sn) = f (x)Im(x)ν0,

(17)
where ν0 = ∫

K 2(t)dt . To complete the proof, let �(x) = I−1
m (x)

[ 1
2


′′(x |x)
+ f −1(x) f ′(x)
′(x |x)] κ2h2, and �m(x) be a k × 1 vector whose elements are the
first k entries of �(x), then

√
nh(m̂(x) − m(x) − �m(x) + op(h

2))
D→ N (0, f −1(x)I−1

m (x)ν0).

��

Proof of Theorem 4. Since β̂ has faster convergence rate than m̂(·), m̂(·) has the same
asymptotic properties as if β were known. Therefore, in the following proof, we study
the property of m̂(·) assuming β to be known.

Define ∂�(θ(Xi ),Yi )
∂θ

= qθ i ,
∂2�(θ(Xi ),Yi )

∂θ∂θT
= qθθ i and similarly, define qmi, qmmi and

so on. Let θ̃ be the estimator under H1 (Huang et al. 2013), and m̂ be the estimator
under H0 (model (2.1). From previous proof, we have

123



152 S. Xiang and W. Yao

θ̃(Xi ) − θ(Xi ) =1

n
f −1(Xi )I

−1
θ (Xi )

n∑

t=1

qθ t Kh(Xt − Xi )(1 + op(1)), (18)

m̂(Xi ) − m(Xi ) =1

n
f −1(Xi )I

−1
m (Xi )

n∑

t=1

qmt Kh(Xt − Xi )(1 + op(1)). (19)

By (18) and (19), we can obtain that

n∑

i=1

�(θ̃(Xi ), Yi ) −
n∑

i=1

�(θ(Xi ), Yi ) =
{
1

n

∑

i,l

qTθ i f
−1(Xl)I

−1
θ (Xl)qθl Kh(Xi − Xl)

+ 1

2n2
∑

i, j,l

qTθ i f
−2(Xl)I

−1
θ (Xl)qθθl I

−1
θ (Xl )qθ j Kh(Xi − Xl )Kh(X j − Xl)

}
(1 + op(1)),

n∑

i=1

�(m̂(Xi ), Yi ) −
n∑

i=1

�(m(Xi ), Yi ) =
{
1

n

∑

i,l

qTmi f
−1(Xl)I

−1
m (Xl)qml Kh(Xi − Xl)

+ 1

2n2
∑

i, j,l

qTmi f
−2(Xl)I

−1
m (Xl)qmml I

−1
m (Xl)qmjKh(Xi − Xl)Kh(X j − Xl)

}
(1 + op(1)),

and so,

T = 1

n

∑

i,l

[
qTθ i I

−1
θ (Xl)qθl − qTmi I

−1
m (Xl)qml

]
f −1(Xl)Kh(Xi − Xl)

+ 1

2n2
∑

i, j,l

[
qTθ i I

−1
θ (Xl)qθθl

× I−1
θ (Xl)qθ j − qTmi I

−1
m (Xl)qmml I

−1
m (Xl)qmj

]
f −2(Xl)Kh(Xi − Xl)Kh(X j − Xl)

≡ 
n + 1

2
�n .

By similar argument as Fan et al. (2001), it can be shown that under conditions
(C9)–(C12), as h → 0, nh3/2 → ∞,


n = 2k − 1

h
K (0)E f (X)−1

+1

n

∑

l �=i

[
qTθ i I

−1
θ (Xl)qθl−qTmi I

−1
m (Xl)qml

]
f −1(Xl)Kh(Xi − Xl) + op(h

−1/2),

�n = − (2k − 1)

h
E f (X)−1

∫
K 2(t)dt

−2

n

∑

i< j

[qTθ i I−1
θ (Xi )qθ j−qTmi I

−1
m (Xi )qmj] f −1(Xi )

× Kh ∗ Kh(Xi − X j )+op(h
−1/2).
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Therefore, T = μn + Wn/2
√
h + op(h−1/2), where μn = (2k−1)|X |

h [K (0) −
0.5
∫
K 2(t)dt],

Wn =
√
h

n

∑

i �= j

{qTθ i I−1
θ (X j )[2Kh(Xi − X j ) − Kh ∗ Kh(Xi − X j )] f −1(X j )qθ j

− qTmi I
−1
m (X j )[2Kh(Xi − X j ) − Kh ∗ Kh(Xi − X j )] f −1(X j )qmj}.

It can be shown that Var(Wn) → ζ , where ζ = 2(2k−1)E f −1(X)
∫ [2K (t)− K ∗

K (t)]2dt . Apply Proposition 3.2 in de Jong (1987), we obtain that

Wn
D→ N (0, ζ ),

and completes the proof. ��
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